

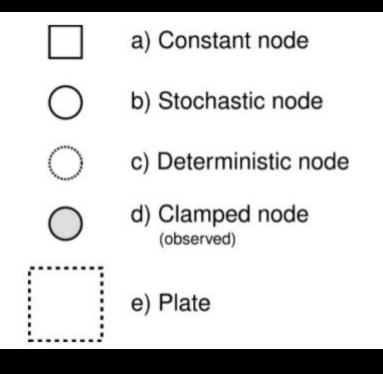

# BCB 503: RevBayes Intro

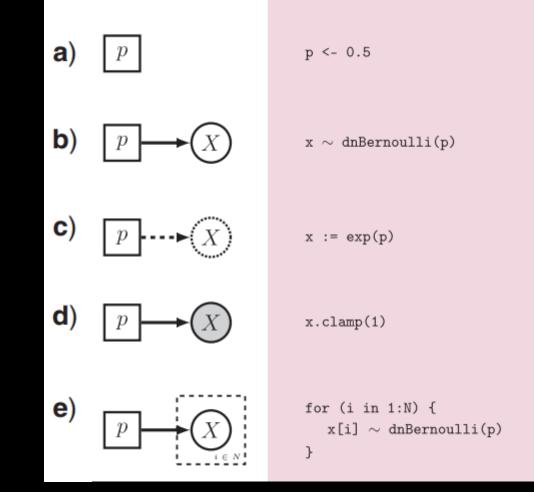


### Second session: Trait Evolution, MCMC

Orlando Schwery, 31. Aug. 2021, University of Idaho

# **Course Plan and Schedule**


- 3:30pm Pacific, on Zoom
- 24. Aug.: Intro
- **31. Aug.:** Trait Evolution
- 07. Sep.: Biogeography
- 14. Sep.: Diversification
- 21. Sep.: [Model Testing/Adequacy]
- 28. Sep.: [Hierarchical Models, FBD, ...?]

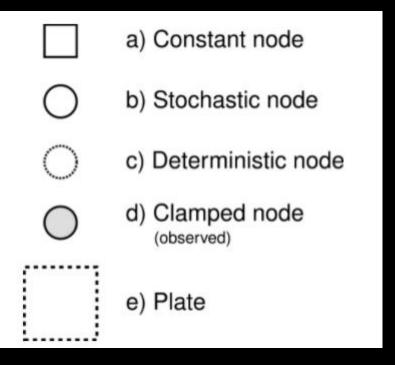

→ Absences: Recording, Remote, Add-On, ...

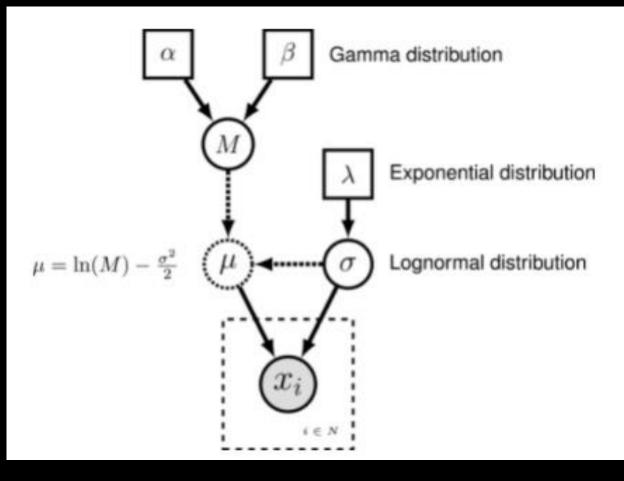
### **Briefest recap from last time:**

- Use from command-line
- Possibility to use RStudio or Jupyter as GUI...

# **Graphical Models**







Directed Acyclic Graph (DAG)

 $\rightarrow$  Nodes (vertices) and Edges (circles/squares and arrows)

Höhna et al. 2016 Syst. Biol.

# **Graphical Models**



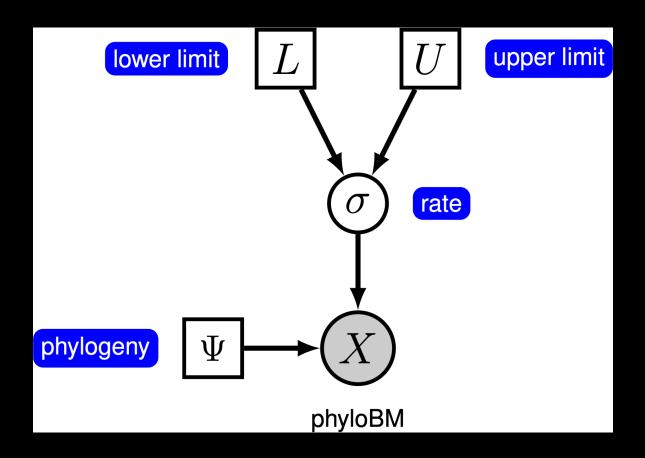


#### Lognormal Model/Distribution:

 $X = e^{\mu + \sigma z}$  [ $\mu$ : location parameter (log mean);  $\sigma$ : standard deviation]

# **Trait Evolution in RevBayes - Overview**

#### Continuous Characters


- Brownian Motion models
  - Simple BM (rates of evolution)
  - Relaxed BM (with rate shifts)
  - Multivariate BM (correlated evo)
  - State-Dependent BM (combines
- Ornstein-Uhlenbeck models
  - Simple OU (trait optima)
  - Relaxed OU (with rate shifts)
- Discrete Characters
- Host Repertoire Evolution

#### Additional contents therein:

- Model selection using reversiblejump MCMC
- Reversible vs. irreversible trait evo
- Background-rate variation
- Results plotting using RevGadgets

# **Simple Brownian-Motion**

- Single rate parameter sigma<sup>2</sup>
  - Drawn from loguniform distribution
  - Lower bound L
  - Upper bound U
- The phylogeny is assumed to be fixed, thus added as a constant node
- The node X contains the BM model for trait data based on tree and rate, with observed data clamped to it



### **Simple Brownian-Motion**

- Put data in subfolder "data" for good practice
- Off to the code!

### MCMC in RevBayes - Overview

#### Introductions to MCMC

- Poisson (airline and coalmine accidents)
- Binomial (coin flipping) [with video links]
- Gamma (archery)
- Convergence Assessment [in R]

#### Additional contents therein:

- Coding up an MCMC from scratch
- Running analyses in batch mode
- More on the Metropolis-Hastings Algorithm
- Visualizing the samples (traces, posterior distributions)
- Different moves, their tuning and weights
- Using ESS to evaluate how different moves perform
- Exploring prior sensitivity

# Running an MCMC

- The other tutorials are doing a pretty good job at looking more indepth at the inner workings of the MCMC, different options etc.
- We'll use it out of the box, focusing on the 'how to run' for now.
- Background:
  - Bayesian analyses: we're interested in the posterior distribution of our parameters, often can't be calculated directly, so we do it numerically using MCMC
  - 'robot on landscape' analogy
    - Move through parameter space
    - Evaluate likelihood of parameter combinations at proposed move
    - Move towards improvement to get to peak(s)

# Running an MCMC

• Off to the code!